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Abstract

Despite increasing criticism of statistical significance testing by

researchers, particularly in the publication of the 1994 American

Psychological Association's style manual, statistical significance test results

are still popular in journal articles. For this reason, it remains important to

understand the logic of inferential statistics. A fundamental concept in

inferential statistics is the sampling distribution. This paper explains the

sampling distribution and the Central Limit Theorem and their role in

statistical significance testing. These concepts are illustrated through the

w,e of hand generated and computer examples.
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Understanding the Sampling Distribution and its

Use in Testing Statistical Significance

In recent years, statistical significance testing has been increasingly

criticized by researchers. In fact, the Journal of Experimental Education has

an entire issue dedicated to a discussion of statistical significance testing

(Thompson, 1993a). Articles within the journal provide explanations of

what statistical significance testing actually doel and why people have

persisted in using it (Shaver, 1993, p. 293). In addition, they present the

reader with alternatives to statistical significance testing (Thompson,

1993b) or at a minimum suggest that effect size should be reported along

with statistical significance (Carver, 1993). According to Thompson

(1994b), as scientists, the questions that should be of concern when

engaging in statistical significance testing are "(a) what the magnitude of

sample effects are and (b) whether these results will generalize." (p. 6)

Unfortunately, statistical significance testing does not answer either of

these questions (Thompson, 1994a).

Despite the cencerns raised about statistical significance testing

by researchers, and the fact that the Publication Manual of the American

Psychological Association (1994, p. 18) itself alerts the researcher of the

limitations of statistical significance testing and encourages one to provide

effect size information, statistical significance test results are still popular

in journal articles. For this reason, it remains important to understand the

logic of statistical significance testing.

The purpose of this paper is to explain the sampling distribution

which is one of the fundamental concepts underlying all inferential

procedures (Chalmer, 1987; Freund & Smith, 1986; Hinkle, Wiersma, &

Jiffs, 1994; Mohr, 1990). A definition and explanation of the sampling
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distribution and its relation to statistical significance testing will be

provided. Included in the discussion is a demonstration of how computer

applications can be used to teach students about the sampling distribution

and the Central Limit Theorem. The paper concludes with an example of

hypothesis testing and an explanation of how the standard deviation of the

sampling distribution is either calculated based on statistical assumptions,

or is empirically estimated using logics such as the "bootstrap".

Chain of Reasoning in Inferential Statistics

When conducting statistical significance testing, the researcher is

trying to infer something from the sample being observed. This is why

statistical significance testing is called inferential statistics. Thus, there are

generally two tasks of inferential statistics. The first task is to test

hypotheses about parameters. The second task is to use statistics

(descriptive measures of a sample) to make statements about or to

estimate parameters (descriptive measures of a population). The

parameters are unknown and that is why inferences need to be made

about them (Chalmer, 1987; Hinkle et al., 1994). For example, if a

representative sample of undergraduate and graduate students at a major

university spend an average of two hours per day during a semester in the

student center, we might correctly infer that all students at the university

spend approximately two hours per day per semester in the student

center.

Hinkle et al. (1994) describe a chain of reasoning for inferential

statistics which is illustrated in Figure 1. They state that the first step in

inferential statistics is to draw a randomly selected (c_ at least a

representative) sample. A randomly selected sample is one in which
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"...every member of the population has an equal chance of being selected."

(Mattson, 1981, p. 75).

The sample needs to be a random sample because we are trying to

make inferences about the population from the sample. If the sample is

not randomly selected we may be introducing systematic bias into the

sample, which can be either intentional or unintentional. A biased sample

would not give us accurate information about the population and the

population is what we are interested in (Mattson, 1981). For example, if

you wanted a law to be passed that only English could be spoken in the

classroom, you might intentionally choose to sample only those people that

you knew did not support bilingual education. Thus, your sample results

would make it appear that the majority of people in the United States

supported your position and the law would be passed. Unintentional

systematic bias could exist if you decided to sample your population by

taking the first 200 people listed in the phone book. In this case, there

would be many sources of potential bias, such as you're only accessing

people who have telephones or who are listed in the telephone directory.

According to Hinkle et al. (1994), the second step in the chain of

reasoning for inferential statistics is that "...the estimate from this sample

must be compared to an underlying distribution of estimates from all other

samples of the same size that might be selected from the popuiation" (p.

147). An underlying distribution can be defined as, "...the distribution of all

possible outcomes of a particular event" (Hinkle et al., 1994, p. 138).

The third step in inferential statistics involves making inferences

based on the comparison and probability of the sample with statistics with

the underlying distribution of the statistic when random sampling has
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been employed (Hinkle et al., 1994). The sampling distribution is this

underlying distribution of the statistic (Hinkle, et al., 1994, p. 149).

The Sampling Distribution

A formal definition of a sampling distribution provided by Hinkle et

al. (1994), "...is the distribution of all values of the statistic under

consideration, from all possible random samples" (p. 149). The sampling

distribution most commonly seen in textbooks is the sampling distribution

of the mean; however, the reader should be aware that you can have a

sampling distribution of any stalstic such as the sampling distribution of

the median or standard deviation.

Sampling distributions can be derived either empirically or

theoretically. Most sampling distributions of a statistic have already been

established theoretically; however, to understand the concept of a

sampling distribution it is useful to demonstrate empirical methods of

deriving these distributions (Maus( ti, 1981). The en lirical methods can

consist of hand calculations or, if this would be too lengthy of a process,

which is often the case, computer applications can be utilized.

To illustrate the concept of a sampling distribution using hand

calculations, consider constructing the sampling distribution for the mean

of a random sample of size n = 2, from the finite population of size N. = 5.

The elements of the population will be the numbers 2, 4, 6, 8, and 10. The

mean of the population is:

a n d

2 + 4 -1- 6 ± 8 + 10 = 6
5
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2 6)2+ (4 6)2 + (6 6)2 +(8 6)2 + (10 6)2

5

=4-3

.2.8

Taking random samples of n = 2 from the population, there are 10

equally probable possibilities:

2 and 4, 2 and 6, 2 and 8, 2 and 10, 4 and 6

4 and 8, 4 and 10, 6 and 8, 6 and 10, 8 and 10

The mean of the first sample is: (2 +4)/2 = 3. The remainder of the means

for each sample may also be calculated, yielding the following values: 4, 5,

6, 5, 6, 7, 7, 8, and 9. If sampling is random, so that each sample statistic

has the probability 1/10 (each outcome [1] divided by the number of

equally likely outcomes [10]), the sampling distribution of the mean would

be as shown in Table 1.

This example illustrates two important points. First, the mean of the

sampling distribution equals the mean of the population, PM which equals

= 6. In addition, the standard deviation of the sampling distribution of

the mean is smaller than the standard deviation of the population, SDN4

1.73 < a = 2.8 (Hinkle et al., 1994). In this example, (3.X. = 1.73 iL the

standard error of the mean, i.e., the standard deviation of the sampling

distribution.

This was just one example with a very small sample and a very small

population. You can create many such examples yourself, and you will see

that the expected value of all possible values of the sample mean from

random samples of size n equals the mean of the population. That is, PM =

g. In addition, the standard error of the mean (standard deviation of the
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sampling distribution of the statistic) is always less than or equal to the

standard deviation of the parent population (Moore & McCabe, 1989).

Upon closer examination, one sees that the standard error of the

mean increases as the variability of the population increases and decreases

as the sample size increases. Thus, the standard error of the statistic is

directly proportional to the standard deviation of the population. The

formula for the standard error of the mean is (Freund & Smith, 1986,

p.274):

SDN4= a/

Central Limit Theorem

Researchers do not normally calculate sampling distributions but

instead use theoretical sampling distributions which are defined by

mathematical theorems. One such theorem is the Central Limit Theorem

(CLT). The CLT states that: given a population with a mean equal to v. and

variance equal to 32, as sample size (n) increases, the sampling distribution

of the mean for simple random samples of n cases will approach the

normal distribution (Hinkle et al., 1994; Howell, 1987). Thus, as is

illustrated in Figure 2, with very small samples the shape of the

distribution will depend on the shape of the parent population, but with

samples of n = 30, even a skewed parent population will result in a normal

distribution (Harnett, 1975; Hinkle et al., 1994). Schulman (1992) refers to

this phenomenon as the "magic of the normal distribution- (p. 19) and

states that without this magic, most of statistics would be limited to

applications where it could be demonstrated that the population had a

normal distribution.
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In order to discuss the CLT, the concept of the normal probability

distribution must be understood. The normal probability distribution has

three properties:

1. A normal distribution histogram is unimodal (has one mode or

peak) and it is symmetrical (i.e., the part of the curve to the right of the

mean is a minror image of the part to the left). It's coefficients of skewness

and kurtosis are both zero ( Bump, 1991).

2. The normal distribution is continuous. This means that for every

value of x there is a value for y and the total area underneath the curve is

equal to 100 percent (Chalmer, 1987; Hinkle et al., 1994).

3. "The normal distribution is asymptotic to the X axis" (Hinkle et al.,

1994, p. 88). The farther away from the mean the curve is, the more the

curve approaches the X axis without actually ever touching it (Hinkle et al.,

1994; Mittag, 1992).

Examples

Hand Calculated Example

To illustrate the concept of the CLT, we can refer to the example used

above for the sampling distribution. As a reminder the population

consisted of the numbers 2, 4, 6, 8, and 10. A histogram of the population

is illustrated in Figure 3. As can b2, seen from the histogram the population

is not a normal distribution. Now if we look at a histogram of the sampling

distribution, which is illustrated in Figure 4, we see that it is approaching a

normal distribution.

c_Q rn mgr. Examples

Computer programs have greatly advanced the teaching of statistical

concepts (Freund & Smith, 1986; Mitaag, 1992; Schulman, 1992; Yang &

Robinson, 1986). To better illustrate the concepts of the sampling

1
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distribution and CLT, a computer application can be used. The computer

application to be used in this paper was developed by James Lang.

Hypercard version 2.0 is needed to run the program on a Macintosh

computer. Samples of the program are provided in the Appendix. In the

first example shown in the Appendix, 200 samples were taken of a sample

size of n = 10. The mean of the population (g) was 4.5 with a standard

deviation (a) of 2.87. The mean of the sampling distribution (PM) was 4.46

and the standard error of the mean (S DM) was .88. This is consistent with

CLT because the standard error of the mean should have equaled 2.87/4ITö

and it did.

In the second example, 200 samples were taken with a sample size

of n = 20. The population parameters remain the same (II = 4.5, a= 2.87)

but the mean of the sampling distribution (1-1M ) was 4.44 and the standard

error of the mean (S_Dm) was .64. Again, this result is consistent wit CLT.

The standard error of the mean (S D ma. should have equaled 2.87R&S and it

did.

In the third example, various sample sizes (n) were chosen and then

the computer took 500 samples of the selected sample sizes (n) from the

population. Means and standard deviations of the sets of sample means

were generated. This example demonstrates the relationship of the mean

(1-tM ) and standard deviation of the sample means (KW) to the mean (g)

and standard deviation (a) of the population. As sample size increases, the

mean (11M ) better approximates the population mean (R). At sample size n

= 2, the mean of ti,e sample means was 4.34 and the population mean was

4.5. At sample size n = 100, the mean of the sample means (IIM) was

4.50104. As one would expect, the standard error of the means also

decreased as sample size increased. At sample size n = 2, the standard
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error of the mean (S D NO was 2.11. Whereas, at sample size n = 100, the

standa:- error of the mean (S D M ) was .28.

CLT and Statistical Significance Testing

Overview

How do the concepts of the sampling distribution and the CLT relate

to statistical significance testing? As was stated at the beginning of the

paper, in statistical significance testing, the researcher is trying to make

inferences about the population based on a random sample drawn from

the population. When this randcm sample is drawn and a statistic such as

the mean (M ) is computed, the statistic represents both the parameter of

the population and sampling error. Statistical significance testing involves

determining the magnitude of the difference between the statistic and the

hypothesized value of the parameter. Once the researcher determines the

magnitude of the difference, he/she makes a judgment as to whether this

difference is "statistically significant" or not. In otherwords, the researcher

decides to either reject or fail to reject the null hypothesis (Hinkle et al.,

1994 ).

Steps in Hypothesis Testing

In order to better understand the role of the sampling distribution in

statistical significance testing, the actual steps of hypothesis testing will be

summarized and an example will be provided. When engaging in statistical

significance testing, the researcher first states the null hypothesis. The null

hypothesis states that their is no relationship or difference (Hinkle et al.,

1994). For example, if it is believed that the mean weight of male college

professors is 170, the null hypothesis would be:
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= 170.

The second step in statistical significance testing is to set the

criterion for rejecting the Ho. In order to do this, the researcher must

selecl, a level of statistical significance which is the probability of making a

Type I error. A Type I error is when a researcher rejects a null hypothesis

that is actually true. The most common levels of significance selected are

.05 and .01 (Hinkle et al., 1994). According to Hinkle et al. (1994), "The

level of significance represents a proportion of area in a sampling

distribution that equals the probatility of rejecting the null hypothesis if it

is true. This area of the sampling distribution is called the region of

rejection" (p. 171). Using the above example that the mean weight of male

college professors is 170, if we selected a random sample of n = 144 male

college professors to test our hypothesis and the sample mean (M), 166,

we would have to use the sampling distribution to decide whether the

difference between the sample mean and the hypothesized population

mean is large enough to reject the null hypothesis. The sampling

distribution for this example is the theoretical distribution of all possible

samples of size n = 144 of male college professors' mean weight. Due to

the Central Limit Theorem, since the sample size is reasonably large, we

know that the distribution of sample means for this example is normal. We

would state that the mean of the distribution equals the population mean

= 170), and the standard error of the mean (S Dm) equals 1.67 if the

population standard deviation (a) is 20.

standard emor of the mean (_jjjj = (1/ WTI 20 / /1441,. =. 1.67
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If the population standard deviation (o) was unknown then the

sample standard deviations would have to be used to estimate the

population standard deviation (cY). Before the use of computers, researchers

had to rely on statistical assumptions to calculate the standard error. Now,

several microcomputer programs exist that allow the researcher to use

bootstrap logic to estimate the standard error (Reinhardt, 1992).

Conceptually, bootstrap methods copy the data set over and over again,

infinitely many times, to create a mega data set. Resampling from the

original data set with replacement occurs. Thus, large numbers of samples

are drawn from the mega file with statistics calculated for each new

sampie and then all the statistics are averaged (Thompson, 1993b, p. 369).

As Reinhardt states (1992), "computer-intensive bootstrap methods can

provide estimates for the standard error of results by using the actual

data, rather than relying on the assumption that the sampling error is

normally distributed..." (p. 15).

The third step is to compute the test statistic. The formula for the

test statistic is:

test statistic = statistic parameter/standard error of the

statistic

In our example: test statistic = (166 170)/1.67. Thus, the test

statistic is equal to -2.4. The test statistic indicates the number of standard

errors the observed sample statistic (M) is from the hypothesized

parameter (p.). This test statistic is then compared to the critical value

found in the appropriate table. The critical values indicate the beginning

values for the region of rejection of the sampling distribution. If the test

statistic exceeds the critical value the null hypothesis is rejected Winkle et

al., 1994). In our example, using the .05 level of significance for a two-
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tailed test, the critical values are + 1.96. Thus, the null hypothesis would be

rejected because -2.4 exceeds the critical value of -1.96.

Conclusion

It is clear that the sampling distribution is a fundamental concept in

statistical significance testing. Computer applications, such as the one

illustrated in this paper, can be helpful in understanding the role of the

sampling distribution and statistical assumptions such as the Central Limit

Theorem in inferential statistics. In addition, computer-intensive bootstrap

methods can be used to estimate the standard deviation of the sampling

distribution when population parameters are unknown, using the actual

data rather than having to rely on statistical assumptions (Reinhardt,

1992).
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Appendix

H sampling distribution li

The purpose of this program is to let you watch
the random process that leads to the sampling
distribution for the sample mean. You may also
compare the results of the program to the
theoretical statement called the Central Limit
Theorem.

Click on the population below that you want to
sample.

Population: 10,11,...29

Population: 0,1,2, ... ,9
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Example 1

H sampling distribution

D LI

LiLLJLJ
L=I

1 0

1

2
2
3
3
4
4
5
5
6
6
7
7
6
8

sample 0 slow
count 0 medium

fast0

sample mean distribution

323
899978987
21032130124244232
9899959675797568889888665595995
43143432402224042313303322124324
69766857987979677676867958988686868596686
22013302204041 1323043440040344200
65795855568956569695575
41233

H sampling distribution .

n = Ito I sample
count

0

o slow
40 medium
0 fast

mean of xBare - 4.4615
SO of x8are - 0.882025

64 Y of the xBare ore within
1 SO of the mean

97 % of the xBare are within
2 SD of the mean

100 % of tha )(Bars aro within
3 SD of the mean

.sample mean distribution
0
1

1

2
2
3
3
4
4
5
5
6
6

7
a

323
899978987
21032130124244232
9809959675797568889888665595995
43143432402224042313303322124324
69766857987979677676867958988686868596686
220133022040411323043440040344200
65795855568956569695575
41233

=nob

-
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sampling distribution LT_

(:).

1

population

LI Li L:=1ELJ
Lti 1=-J

20

0
1

1

2
2
3
3
4
4
5
5
6
6
7
7

e

sample 0 slow
count 0 0 medium

® fast0

sample mean distrtion

8
44204104
696976758985688886895866888999597875
41220004422340022434000024144243022300442
79856655585556767559887657865567766966
021002012010022040204044002142200
7658659868578778

(Clear)

I-I sampling distribution r1.1

n =1r-20 jo sample
count

00

C) slow
C) medium
C) fast

mean of aars = 4.43525
SO of x8ar5 = 0.637393

68 X of the aars aro
1 SO of tho mean

94 X of the )(Bars ore
2 SD of the mean

100 % of the xBors Ore
3 SO of the mean

within

within

oithin

sample mean distribution

1

1

2
2
3
3
4

5
5
5
6
7

8
44204104
696976758985688886895856888999597875
41220004422340022434000024144243022300442
76855666586556767559887657865567765956
021002012010022040204044002142200
7668658868678778

click to contiaso
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Example 3

:4 sampling distribution FY

Enter a sample size,n, below and click calculate. The computer will then take
500 samples each of size n from the population below. For each sample the
mean is then calculated. Then the mean and standard deviation of this set of
500 sample means is calculated. These values approximate the mean and
standard deviation of the sampling distribution of the sample mean.

population

LI
Li

u sampling distribution

EL . 4.5

CF = 2.87228

1,1 1

Lai Li Li
[2.J1 D

Lti [Li Ltd

Mean of set of
sample means

SD of set of
sample means

2
4

6
8
10
12

16
18
20
50
100

4.341
4.4565
4.413333
4.44675
4.522
4.525
4.535571
4.491375
4.520889
4.5212
4.46976
4.50104

2.105251
1.468262

1.180795
0.958499

0.886571
0.807318

0.753904
0.69554
0.700274

0.679879
0.4'2.1262

0.284387

1

11

11 11

f , A

clear

;36'1 CCYY AVAILABLY
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Table 1

Sampling Distribution of the Mean

Probability

3 1/10

4 1/10

5 2/10

6 2/10

7 2/10

8 1/10

9 1/10



Population

Sample

Sampling
.-- Distribution

---. ...-...--- --,--- .----- --.- ---. .,...."

...°
...""

Figure 1. Chain of reasoning for statistical significance testing.



Parent Population

Sampling Distribution of the Mean for Sample Size n = 2

Sampling Distribution of the Mean foi Sample Size n = 30

Figure 2. Sampling distributions of the mean for a skewed parent

population.

24
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1 2 3 4 5 6 7 8 9 10

Figure 3. Histogram of the population.

1 2 3 4 5 6 7 8 9 10

Figure 4. Histogram of the sampling distribution of the mean.


